Marketing internetowy w praktyce!

Zarejestruj się do bezpłatnej platformy e-learningowej.

Zarejestruj się bezpłatnie

Kanał YouTube – Efektywna firma w necie

Wskazówki, rozmowy, inspiracje

Subskrybuj kanał na YouTube i bądź na bieżąco!

Bezpłatny audyt SEO

Sprawdź, jak Twoja strona radzi sobie w sieci!

Audytuj bezpłatnie
10.05.2018 | czas czytania: 5 min | SEO | autor: Artefakt

Nowy Algorytm Google wykorzystujący Reinforcement Learning

Nowy Algorytm Google wykorzystujący Reinforcement Learning

Na przełomie kwietnia i maja w Vancouver odbyła się konferencja Sixth International Conference on Learning Representations poświęcona sztucznej inteligencji. Nie zabrakło na niej przedstawicieli Google, którzy zaprezentowali najnowszy algorytm oparty o Reinforcement Learning służący do zwracania adekwatnych wyników wyszukiwania na zapytania wpisywane przez użytkowników.

Maszynowe uczenie w algorytmie Google

Google chce dostarczać dokładniejsze odpowiedzi na zapytania użytkowników. W tym celu korzysta z machine learning, aby udoskonalić mechanizm wyszukiwarki. Nowy algorytm będzie pośrednikiem pomiędzy użytkownikiem a tradycyjnym algorytmem tworzącym listę wyników wyszukiwania na podstawie czynników rankingowych. Ma działać zupełnie niezależnie i na zasadzie uczenia przez wzmacnianie (Reinforcement Learning) zwracać internautom lepiej dopasowane strony. Sposób działania nowej technologii Google został opisany w artykule: Ask The Right Questions: Active Question Reformulation with Reinforcement Learning.

Na czym polega Reinforcement Learning?

Reinforcement Learning (uczenie przez wzmacnianie) to metoda należąca do machine learning stosowania do rozwiązywania problemów, w przypadku których nie można skorzystać z modeli analitycznych. Nawiązuje do psychologii behawioralnej i teorii wzmocnienia – wyrabiania prawidłowych wzorców zachowań poprzez kary oraz nagrody.

Uczenie przez wzmacnianie polega na tym, że agent (np. algorytm wyszukiwarki) działając w określonym środowisku (np. wyszukiwarce), podejmuje z nim interakcje. Wynik każdej akcji może być negatywny (niekliknięcie przez użytkownika w żaden z wyników wyszukiwania) lub pozytywny (przejście na jedną z zaproponowanych przez wyszukiwarkę stron). Na podstawie wszystkich interakcji agent tworzy określoną politykę, wzorzec postępowania w określonym środowisku, które gwarantuje sukces.

Proces Reinforcement Learning można porównać do nauki jazdy na rowerze. Jeśli dziecko będzie przechylać się za bardzo na lewą lub prawą stronę, nie utrzyma równowagi i upadnie. Na zasadzie prób i błędów w końcu uda mu się dobrać odpowiednią pozycję, dzięki której pojedzie samodzielnie na jednośladzie.

Jak będzie działać algorytm oparty o uczenie przez wzmacnianie?

Użytkownik wpisuje frazę do wyszukiwarki. Algorytm uczenia maszynowego (agent) przekształca zapytanie na wiele różnych pytań, a następnie przesyła je do tradycyjnego algorytmu opartego na czynnikach rankingowych. Na podstawie zwróconych odpowiedzi, nowy algorytm wykonuje wstępną selekcję i wysyła zagregowaną listę stron użytkownikowi.

W ten sposób agent ma za użytkownika przeprowadzać proces wielokrotnego przeformułowania zapytania i przeszukiwania wyników wyszukiwania w celu znalezienia satysfakcjonującej odpowiedzi. Algorytm maszynowego uczenia nie będzie miał dostępu do środowiska – głównego mechanizmu wyszukiwarki, więc na zasadzie prób i błędów, redefiniując zapytanie oraz porównując otrzymane wyniki, postara się znaleźć listę najlepszych stron dla internauty.

Znaczenie Reinforcement Learning Algorithm dla SEO

Nowy algorytm nie będzie co prawda wpływał na proces rankingowania stron internetowych, ale zadecyduje o wyglądzie listy wyników wyszukiwania. Odpytując kilkukrotnie wyszukiwarkę i dokonując selekcji zapytań, nowa technologia Google nie dopuści do użytkownika stron, które według niej nie są trafne i nie odpowiadają wyczerpująco na wpisane zapytanie. Tym samym serwisy bogate w content, linki lub doskonale zoptymalizowane mogą nie zostać zaprezentowane w rankingu.

Wprowadzenie algorytmu uczenia maszynowego po raz kolejny pokazuje, że wielu specjalistów SEO błędnie koncentruje się wyłącznie na czynnikach rankingowych Google, chociaż znaczenie odgrywa także trafność tematyki serwisu i treści oraz jej dopasowanie do zapytania użytkownika.

Przygotowanie serwisu do wyszukiwarki opartej o machine learning

Algorytm uczenia maszynowego to na razie teoria, nie wiadomo, kiedy stanie się jednym z mechanizmów wyszukiwarki odpowiadających za wygląd wyników wyszukiwania. Gdy tak się stanie, będzie należało z jednej strony optymalizować stronę ze względu na tradycyjne czynniki rankingowe, a z drugiej trzeba zadbać o to, aby pozycjonować serwis na odpowiednie słowa kluczowe i nasycać go treścią trafiającą w potrzeby użytkowników. Satysfakcja i zadowolenie internautów wyznaczają kierunek rozwoju googlowskich rozwiązań.

Ocena artykułu:
Ikona

How useful was this post?

Kliknij na gwiazdkę, aby ocenić!

Średnia oceny 0 / 5. Liczba głosów: 0

Brak ocen

Zapisz się na nasz bezpłatny newsletter i poznaj sprawdzone wskazówki marketingowe!

Pozostałe artykuły

Ikona

How useful was this post?

Kliknij na gwiazdkę, aby ocenić!

Średnia oceny 5 / 5. Liczba głosów: 2

Brak ocen

Nowoczesne koncepcje marketingowe – jak zmieniają się zasady gry w erze AI? 12.09.2025 | czas czytania: 5:00 min | marketing internetowy

Nowoczesne koncepcje marketingowe – jak zmieniają się zasady gry w erze AI?

Jeszcze dekadę temu nowoczesne koncepcje marketingowe opierały się głównie na digitalizacji działań i obecności w internecie. Dziś sytuacja wygląda zupełnie inaczej – mamy do czynienia z rewolucją, której głównym napędem jest sztuczna inteligencja. Automatyzacja, hiperpersonalizacja i zaawansowana analityka danych sprawiają, że zasady gry w marketingu zmieniają się szybciej niż kiedykolwiek wcześniej. Nowi gracze zdobywają rynek, a tradycyjne firmy muszą się dostosować, aby nie zostać w tyle. W tym artykule pokażemy, jak Marketing 4.0, Marketing 5.0, a także klasyczne modele – od Koncepcji 4P po Koncepcję 7P – łączą się dziś z narzędziami AI, aby tworzyć skuteczne działania marketingowe i budować przewagę konkurencyjną. Dowiesz się również, jak Ty, jako przedsiębiorca, możesz z nich korzystać w swojej codziennej pracy. Czytaj więcej
Ikona

How useful was this post?

Kliknij na gwiazdkę, aby ocenić!

Średnia oceny 5 / 5. Liczba głosów: 1

Brak ocen

Zastosowanie AI w kampaniach e-mail marketingowych – jak zwiększyć skuteczność mailingu? 08.09.2025 | czas czytania: 5:00 min | Sztuczna Inteligencja AI

Zastosowanie AI w kampaniach e-mail marketingowych – jak zwiększyć skuteczność mailingu?

Czy wiesz, że e-mail marketing wciąż generuje średnio 42 zł przychodu z każdej wydanej złotówki? To czyni go jednym z najskuteczniejszych kanałów komunikacji z klientami. Problem w tym, że rynek jest przesycony wiadomościami, a skrzynki odbiorcze użytkowników pękają w szwach. Rozwiązaniem okazuje się sztuczna inteligencja, która nie tylko zwiększa skuteczność kampanii, ale też pozwala tworzyć doświadczenia dopasowane do indywidualnych potrzeb odbiorców. W tym artykule pokażemy, jak zastosowanie AI w automatyzacji marketingu odmienia oblicze mailingu. Dowiesz się, jak działa automatyzacja e-mail marketingu, w jaki sposób tworzenie spersonalizowanych kampanii wpływa na konwersje oraz jakie narzędzia warto znać. Czytaj więcej
Ikona

How useful was this post?

Kliknij na gwiazdkę, aby ocenić!

Średnia oceny 5 / 5. Liczba głosów: 1

Brak ocen

etyka w AI 01.09.2025 | czas czytania: 5:00 min | Sztuczna Inteligencja AI

Etyka w wykorzystaniu AI w strategiach marketingowych – krok po kroku

Czy sztuczna inteligencja naprawdę może być etyczna? To pytanie zadaje sobie coraz więcej przedsiębiorców wdrażających nowoczesne rozwiązania do swoich działań marketingowych. Z jednej strony technologia sztucznej inteligencji rewolucjonizuje kampanie reklamowe, zwiększa skuteczność kampanii marketingowych i pozwala lepiej zrozumieć zachowania klientów. Z drugiej – pojawiają się wyzwania związane z ochroną danych osobowych, zapobieganiem manipulacji czy przestrzeganiem norm społecznych. W tym artykule pokażemy, jak etyczne wykorzystanie AI w strategiach marketingowych może wspierać rozwój firmy, budować zaufanie klientów i wzmacniać reputację marki, jednocześnie pozostając w zgodzie z kodeksem etycznym AI oraz obowiązującymi regulacjami prawnymi. Czytaj więcej

Potrzebujesz skutecznych rozwiązań marketingowych? Masz je na wyciągnięcie ręki. Nasi eksperci czekają na Twój sygnał. Porozmawiamy?

Zamów rozmowę
Kontakt